Search results for "Nexafs spectroscopy"

showing 2 items of 2 documents

Role of Surface Chemistry in the Superhydrophobicity of the Springtail Orchesella cincta (Insecta:Collembola)

2020

Collembola are ancient arthropods living in soil with extensive exposure to dirt, bacteria, and fungi. To protect from the harsh environmental conditions and to retain a layer of air for breathing when submerged in water, they have evolved a superhydrophobic, liquid-repelling cuticle surface. The nonfouling and self-cleaning properties of springtail cuticle make it an interesting target of biomimetic materials design. Recent research has mainly focused on the intricate microstructures at the cuticle surface. Here we study the role of the cuticle chemistry for the Collembola species Orchesella cincta (Collembola, Entomobryidae). O. cincta uses a relatively simple cuticle structure with prima…

biomimicryCuticle02 engineering and technology010402 general chemistrySpringtail01 natural scienceschemistry.chemical_compoundChitinsum frequency generationGeneral Materials ScienceWaxbiologyNEXAFS spectroscopy021001 nanoscience & nanotechnologybiology.organism_classificationEntomobryidae0104 chemical sciencesOrchesella cinctaToF-SIMS spectroscopyChemical engineeringchemistryvisual_artvisual_art.visual_art_mediumcuticletriacylglycerol0210 nano-technologyLayer (electronics)Sum frequency generation spectroscopy
researchProduct

Photocontrolled On-Surface Pseudorotaxane Formation with Well-Ordered Macrocycle Multilayers.

2016

The photoinduced pseudorotaxane formation between a photoresponsive axle and a tetralactam macrocycle was investigated in solution and on glass surfaces with immobilized multilayers of macrocycles. In the course of this reaction, a novel photoswitchable binding station with azobenzene as the photoswitchable unit and diketopiperazine as the binding station was synthesized and studied by NMR and UV/Vis spectroscopy. Glass surfaces have been functionalized with pyridine-terminated SAMs and subsequently with multilayers of macrocycles through layer-by-layer self assembly. A preferred orientation of the macrocycles could be confirmed by NEXAFS spectroscopy. The photocontrolled deposition of the …

Supramolecular chemistryTetralactam macrocyclesurface chemistry02 engineering and technology010402 general chemistryLinear dichroismPhotochemistry01 natural sciencessupramolecular chemistryCatalysischemistry.chemical_compoundSpectroscopyta116pseudorotaxanesphotochemistryOrganic ChemistryGeneral Chemistry021001 nanoscience & nanotechnologyXANES0104 chemical sciencesazobenzeneAzobenzenechemistryNexafs spectroscopySelf-assembly0210 nano-technologyChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct